On event-based optical flow detection
نویسندگان
چکیده
Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations.
منابع مشابه
Traffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملAn Unsupervised Learning based Approach for Unexpected Event Detection
This paper presents a generic unsupervised learning based solution to unexpected event detection from a static uncalibrated camera. The system can be represented into a probabilistic framework in which the detection is achieved by a likelihood based decision. We propose an original method to approximate the likelihood function using a sparse vector machine based model. This model is then used t...
متن کاملPKU OS @ TRECVID 2012 : Surveillance Event Detection
In this paper, we describe our system for surveillance event detection task in TRECVID 2012. ”PersonRun”, ”Pointing” and ”ObjectPut” are the 3 events we detect in our system. For ”PersonRun” event, there are three steps to make a decision. Firstly, background subtraction and person detection are applied to the frame sequence. Secondly, particle filter is used to track the moving humans. Thirdly...
متن کاملAbnormal Event Detection Based on Saliency Information
Abnormal event detection is a challenging task in video analysis. In this paper, we propose a new abnormal event detection algorithm for surveillance videos. It is well accepted that human eyes are extremely sensitive to abnormal events and they can quickly pay attention to the locations of these abnormal events in visual scenes. Thus, the characteristics of the Human Visual System (HVS) can be...
متن کاملFire Detection in Video Sequences using Optical Flow Estimation
Vision-based flame detection can be applied in large open spaces for fire detection, which has been achieved with camera surveillance systems. The motion estimator exploits some motion features such as color, shape and texture that are used to recognize fire and non-fire region. Classical systems applied optical flow estimation methods for flame detection which are based on the assumptions, for...
متن کاملUniversity of Central Florida at TRECVID 2008 Content Based Copy Detection and Surveillance Event Detection
In this paper, we describe our approaches and experiments in content-based copy detection (CBCD) and surveillance event detection pilot (SEDP) tasks of TRECVID 2008. We have participated in the video-only CBCD task and four of the SEDP events. The CBCD method relies on sequences of invariant global image features and efficiently matching and ranking of those sequences. The normalized Hu-moments...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015